[Tourlakis G] Lectures in logic and set theory. M(BookFi.org), Science
[ Pobierz całość w formacie PDF ]
This page intentionally left blank
CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS
EDITORIAL BOARD
B. BOLLOBAS, W. FULTON, A. KATOK, F. KIRWAN,
P. SARNAK
Lectures in Logic and Set Theory Volume 1
This two-volume work bridges the gap between introductory expositions of
logic or set theory on one hand, and the research literature on the other. It can
be used as a text in an advanced undergraduate or beginning graduate course
in mathematics, computer science, or philosophy. The volumes are written in
a user-friendly conversational lecture style that makes them equally effective
for self-study or class use.
Volume 1 includes formal proof techniques, a section on applications of
compactness (including non-standard analysis), a generous dose of computa-
bility and its relation to the incompleteness phenomenon, and the first presen-
tation of a complete proof of Godel’s second incompleteness theorem since
Hilbert and Bernay’s
Grundlagen
.
Already published
2 K. Petersen
Ergodic theory
3 P.T. Johnstone
Stone spaces
5 J.-P. Kahane
Some random series of functions, 2nd edition
7 J. Lambek & P.J. Scott
Introduction to higher-order categorical logic
8 H. Matsumura
Commutative ring theory
10 M. Aschbacher
Finite group theory, 2nd edition
11 J.L. Alperin
Local representation theory
12 P. Koosis
The logarithmic integral I
14 S.J. Patterson
An introduction to the theory of the Riemann zeta-function
15 H.J. Baues
Algebraic homotopy
16 V.S. Varadarajan
Introduction to harmonic analysis on semisimple Lie groups
17 W. Dicks & M. Dunwoody
Groups acting on graphs
19 R. Fritsch & R. Piccinini
Cellular structures in topology
20 H. Klingen
Introductory lectures on Siegel modular forms
21 P. Koosis
The logarithmic integral II
22 M.J. Collins
Representations and characters of finite groups
24 H. Kunita
Stochastic flows and stochastic differential equations
25 P. Wojtaszczyk
Banach spaces for analysts
26 J.E. Gilbert & M.A.M. Murray
Clifford algebras and Dirac operators in harmonic analysis
27 A. Frohlich & M.J. Taylor
Algebraic number theory
28 K. Goebel & W.A. Kirk
Topics in metric fixed point theory
29 J.F. Humphreys
Reflection groups and Coxeter groups
30 D.J. Benson
Representations and cohomology I
31 D.J. Benson
Representations and cohomology II
32 C. Allday & V. Puppe
Cohomological methods in transformation groups
33 C. Soule et al.
Lectures on Arakelov geometry
34 A. Ambrosetti & G. Prodi
A primer of nonlinear analysis
35 J. Palis & F. Takens
Hyperbolicity, stability and chaos at homoclinic bifurcations
37 Y. Meyer
Wavelets and operators 1
38 C. Weibel,
An introduction to homological algebra
39 W. Bruns & J. Herzog
Cohen-Macaulay rings
40 V. Snaith
Explicit Brauer induction
41 G. Laumon
Cohomology of Drinfeld modular varieties I
42 E.B. Davies
Spectral theory and differential operators
43 J. Diestel, H. Jarchow, & A. Tonge
Absolutely summing operators
44 P. Mattila
Geometry of sets and measures in Euclidean spaces
45 R. Pinsky
Positive harmonic functions and diffusion
46 G. Tenenbaum
Introduction to analytic and probabilistic number theory
47 C. Peskine
An algebraic introduction to complex projective geometry
48 Y. Meyer & R. Coifman
Wavelets
49 R. Stanley
Enumerative combinatorics I
50 I. Porteous
Clifford algebras and the classical groups
51 M. Audin
Spinning tops
52 V. Jurdjevic
Geometric control theory
53 H. Volklein
Groups as Galois groups
54 J. Le Potier
Lectures on vector bundles
55 D. Bump
Automorphic forms and representations
56 G. Laumon
Cohomology of Drinfeld modular varieties II
57 D.M. Clark & B.A. Davey
Natural dualities for the working algebraist
58 J. McCleary
A user’s guide to spectral sequences II
59 P. Taylor
Practical foundations of mathematics
60 M.P. Brodmann & R.Y. Sharp
Local cohomology
61 J.D. Dixon et al.
Analytic pro-P groups
62 R. Stanley
Enumerative combinatorics II
63 R.M. Dudley
Uniform central limit theorems
64 J. Jost & X. Li-Jost
Calculus of variations
65 A.J. Berrick & M.E. Keating
An introduction to rings and modules
66 S. Morosawa
Holomorphic dynamics
67 A.J. Berrick & M.E. Keating
Categories and modules with K-theory in view
68 K. Sato
Levy processes and infinitely divisible distributions
69 H. Hida
Modular forms and Galois cohomology
70 R. Iorio & V. Iorio
Fourier analysis and partial differential equations
71 R. Blei
Analysis in integer and fractional dimensions
72 F. Borceaux & G. Janelidze
Galois theories
73 B. Bollobas
Random graphs
LECTURES IN LOGIC
AND SET THEORY
Volume 1: Mathematical Logic
GEORGE TOURLAKIS
York University
[ Pobierz całość w formacie PDF ]